Deep Learning for Chemical Compound Stability Prediction

نویسندگان

  • Ruoqian Liu
  • Logan Ward
  • Ankit Agrawal
  • Wei-keng Liao
  • Chris Wolverton
  • Alok Choudhary
چکیده

This paper explores the idea of using deep neural networks with various architectures and a novel initialization method, to solve a critical topic in the field of materials science. Understanding the relationship between the composition and the property of materials is essential for accelerating the course of materials discovery. Data driven approaches using advanced machine learning to derive knowledge from that of existing compounds, and/or from simulations of nonexisting ones, have only started to play a crucial role. We demonstrate an application with a large-scale data set containing 300K organic and inorganic compounds. Deep multilayer perceptrons are used to capture nonlinear mappings between chemical composition and compound stability characterized by a continuous value, known as the formation energy. It is surprising to see that input features as raw and sparse as the compositional fractions of elements can lead to a remarkably accurate modeling of a far-fetched regression prediction. The performance is shown to be outperforming state-of-the-art predictions by as much as 54%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Learning for Drug Target Prediction

An important computational tool in drug design is target prediction where either for a given chemical structure the interacting biomolecules (e.g. proteins) must be identified. Chemical structures interact with different biomolecules if they have similar 3D structure. Thus, the outputs of the prediction are highly interdependent from each other. Furthermore, we have partially labelled molecules...

متن کامل

Multi-Task Deep Networks for Drug Target Prediction

An important computational tool in drug design is target prediction where either for a given chemical structure the interacting biomolecules (e.g. proteins) must be identified. Chemical structures interact with different biomolecules if they have similar 3D structure. Thus, the outputs of the prediction are highly interdependent from each other. Furthermore, we have partially labelled molecules...

متن کامل

Deep Learning as an Opportunity in Virtual Screening

Deep learning excels in vision and speech applications where it pushed the stateof-the-art to a new level. However its impact on other fields remains to be shown. The Merck Kaggle challenge on chemical compound activity was won by Hinton’s group with deep networks. This indicates the high potential of deep learning in drug design and attracted the attention of big pharma. However, the unrealist...

متن کامل

CGBVS-DNN: Prediction of Compound-protein Interactions Based on Deep Learning.

Computational prediction of compound-protein interactions (CPIs) is of great importance for drug design as the first step in in-silico screening. We previously proposed chemical genomics-based virtual screening (CGBVS), which predicts CPIs by using a support vector machine (SVM). However, the CGBVS has problems when training using more than a million datasets of CPIs since SVMs require an expon...

متن کامل

Simulate Congestion Prediction in a Wireless Network Using the LSTM Deep Learning Model

Achieved wireless networks since its beginning the prevalent wide due to the increasing wireless devices represented by smart phones and laptop, and the proliferation of networks coincides with the high speed and ease of use of the Internet and enjoy the delivery of various data such as video clips and games. Here's the show the congestion problem arises and represent   aim of the research is t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016